Knowledge workers experience many interruptions during their work day. Especially when they happen at inopportune moments, interruptions can incur high costs, cause time loss and frustration. Knowing a person’s interruptibility allows optimizing the timing of interruptions and minimize disruption. Recent advances in technology provide the opportunity to collect a wide variety of data on knowledge workers to predict interruptibility. While prior work predominantly examined interruptibility based on a single data type and in short lab studies, we conducted a two-week field study with 13 professional software developers to investigate a variety of computer interaction, heart-, sleep-, and physical activity-related data. Our analysis shows that computer interaction data is more accurate in predicting interruptibility at the computer than biometric data (74.8% vs. 68.3% accuracy), and that combining both yields the best results (75.7% accuracy). We discuss our findings and their practical applicability also in light of collected qualitative data.

You may access the pre-print here.